libk  kmem

kmem is a libk module that contains various functions for memory allocation and deallocation. it uses the short naming convention with the glyph m.

module functions

kmem supplies two module-level functions, used to interact with the kmptr container type.

  • kmfree(kmptr) → void - free, downref, or ignore the pasted object as appropriate
  • kmshred(kmptr) → void - free, downref, or ignore the pasted object as appropriate. if deallocating, zero its contents
  • kmstat(void*) → kmptr - convenience function to wrap a pointer to a non-managed object in a kmptr struct, so it can be passed to functions that accept arbitrary objects. kmptr p = kmstat(raw) is equivalent to kmptr p = { kmkind_none, raw, NULL }.
  • kmtaint(&kmptr) → void - "taints" a kmptr object by setting it to be shredded when freed. this may be desirable if the object pointed to contains privileged information.

types

kmem defines the following types:

  • enum kmkind - enumerates allocation strategies
  • struct kmptr - abstract pointer object
  • struct kmcell - abstract memory cell
  • struct kmref - a reference-counted cell
  • struct kmnode - a node in an allocation tree
  • struct kmpool - a memory pool

kmptr and kmcell are both very similar. the difference is that a kmptr points to a region in memory and can be passed around freely. a kmcell is the actual in-memory representation of an allocation cell. a kmcell cannot be usefully instantiated; rather, it is downcast from an actual cell type (e.g. kmnode n; kmcell* s = (kmcell*)(&n))

kmkind

kmkind is an enum that specifies an allocation function.

  • kmkind_none - no allocation
  • kmkind_heap - heap allocation
  • kmkind_pool - pool allocation
  • kmkind_ref - reference-counting allocation
  • kmkind_tree - tree allocation

kmptr

kmem functions can operate on both raw pointers and the kmptr struct type. kmptr is a generic struct that can contain any kind of pointer. this is useful if you wish to allocate different objects in different manners, but pass them on into a single interface.

memory pointed at by kmptr pointers can be freed either with the usual specialized function, or by passing the kmptr structure itself to the generic function kmfree, which will handle it appropriately, even if it's a pointer to a garbage-collected object or to a static region of memory.

a kmptr has the following layout:

  • kmkind kind - codes the type of pointer; kmkind_none indicates a non-allocated pointer to a static (global or on-stack) object.
  • kmshred shred - an enum. if kmshred_yes, the value will be zeroed or otherwise made unreadable on free. if no, kmfree will consult src for shred policy if it is not NULL.
  • void* ref - the raw pointer enclosed by cell
  • kmcell* cell - a pointer to an object enclosure, typically either a memory pool or a referencing-counting object. NULL if not needed.

the convenience function kmstat(void*) → kmptr wraps a pointer to a static object in a kmptr struct.

kmcell

kmcell is a stub struct used to disambiguate between source types.a "source" is an object that can hold an allocated object, such as the heap, a memory pool, a fixed-length array on stack, or a fixed-length global array. all values produced by a kmem allocation function point to within a kmcell.

  • kmptr_kind kind - kind of cell
  • size_t sz - kind of cell (data plus all fields)
  • kmshred shred - shredding flag

kmref

kmref is a struct that constitutes the in-memory representation of a reference-counted cell.

  • kmkind kind = kmkind_ref - kind of cell
  • size_t sz - size of cell (data plus all fields)
  • kmshred shred - shredding flag
  • size_t refs - number of active references
  • kmcell* src - source, if any
  • char data[] - content of cell

kmnode

kmnode is a struct that constitutes the in-memory representation of a tree node.

  • kmkind kind = kmkind_tree - kind of cell
  • size_t sz - size of cell (data plus all fields)
  • kmshred shred - shredding flag
  • kmnode* parent - parent node
  • kmnode* child - first child node
  • kmnode* lastchild - last child node
  • kmnode* prev - previous sibling, NULL if first
  • kmnode* next - next sibling, NULL if last
  • char data[] - content of cell

kmpool

  • kmkind kind = kmkind_pool - indicates the kind of source
  • size_t sz - size of cell (data plus all fields)
  • kmshred shred - shredding flag
  • size_t cellsz - size of individual pool cells
  • kmpoolcell* top - pointer to most recently allocated pool cell
  • kmpoolcell* bottom - pointer to most recently freed pool cell
  • kmpoolcell data[] - content of cell

kmpoolcell

  • kmpoolcell* last - pointer to last element allocated before this one
  • char data[] - pool data

kmshred

kmshred is an enum used to indicate whether an object should be "shredded" (written over) in memory when it's deleted. this is a useful means to ensure that privileged information is not accidentally left in memory after use. if the shredding mechanism is not useful, compile libk with the flag KFmem_noshred to exclude its functions and fields.

  • kmshred_yes - marks an object to shred on free
  • kmshred_no - marks an object not to shred on free

naming convention

kmem function names are based on the method of allocation and the action being performed. methods are listed in the section below. kmem defines a number of standardized actions, though not every method uses every action. the character listed in brackets is suffixed to the name of the method to produce a function name: for instance, kmheapa will allocate memory on the heap, while kmrefd will decrement the reference count of its argument.

  • initialize [i] - initializes a memory store on the heap
  • initialize fixed [if] - initialize a memory store on the stack or in a fixed-size global
  • allocate [a] - return a raw pointer to a new region of memory of the given size, ready to write, or NULL if not possible. contents of that region undefined. takes parameter (size_t sz).
  • allocate pointer object [ao] - like allocate, but returns a kmptr instead of a raw void*.
  • zero [z] - allocate a new region of memory and zero it before returning it for writing.
  • zero pointer object [zo] - like zero, but returns a kmptr instead of a raw void*.
  • free [f] - free a section of memory, either decrementing a reference count or returning it to whatever pool it came from.
  • shred [s] - destroy whatever was in the segment of memory, then return it to the pool it came from.
  • destroy [x] - tears down a memory store
  • upref [u] - increments a reference counter

methods

kmem currently supports the following methods of memory management, along with which methods are defined for it. (note that a implies z and f implies s). a method may be excluded from a libk binary by defining the flag KFmem_no[name], e.g. KFmem_noheap

  • heap [af] - standard heap allocation
    • kmheapa(size_t) → void* - allocate
    • kmheapz(size_t) → void* - zero-allocate
    • kmheapao(size_t) → kmptr - allocate pointer object
    • kmheapzo(size_t) → kmptr - zero-allocate pointer object
    • kmheapf(void*) → void - free
    • kmheaps(void*) → void - shred
  • ref [afu] - reference-counted heap object
    • kmrefa(kmcell*, size_t) → void* - allocate
    • kmrefz(kmcell*, size_t) → void* - zero-allocate
    • kmrefao(kmcell*, size_t) → void* - allocate pointer object
    • kmrefzo(kmcell*, size_t) → void* - zero-allocate pointer object
    • kmreff(void*) → void - downref; free if last ref
    • kmrefs(void*) → void - downref and mark for shred on last ref
  • pool [ixaf] - memory pool
    • kmpooli(kmcell*, size_t sz, size_t n) → kmpool* - initialize a fixed memory pool (a pool of n cells of length sz)
    • kmpoolx(kmpool*) → void - tear down a memory pool
    • kmpoola(kmpool*) → void* - allocate from pool
    • kmpoolz(kmpool*, size_t) → void* - zero-allocate from pool
    • kmpoolao(kmpool*, size_t) → void* - allocate pointer object
    • kmpoolzo(kmpool*, size_t) → void* - zero-allocate pointer object
    • kmpoolf(void*) → void - downref; free if last ref
    • kmpools(void*) → void - downref and mark for shred on last ref
  • tree [af] - uses a node-child strategy. when a node is freed, all of its children are automatically freed as well.
    • kmtreea(kmcell* src, void* parent, size_t) → void* - create a tree node. if parent is NULL, the node will the top of a new tree. if src is null, allocate on-heap.
    • kmtreez(kmcell* src, void* parent, size_t) → void* - like kmtreea but zeroed
    • kmtreeao(kmcell* src, void* parent, size_t) → kmptr - like kmtreea but returns a kmptr
    • kmtreezo(kmcell* src, void* parent, size_t) → kmptr - like kmtreez but returns a kmptr
    • kmtreef(void*) → kmptr - frees a node and all its children

macros

kmem defines the following macros.

  • Kmsz(array) - a convenience macro to return the number of elements in a static array. inserts the text ( sizeof (array) / sizeof (array) [0] )